Telegram Group & Telegram Channel
Какие метрики качества ранжирования вы знаете?

Такие метрики используются для оценки эффективности алгоритмов ранжирования, часто применяемых в рекомендательных системах.

🟠 Precision at K (p@K). Это метрика качества ранжирования для одного объекта. Измеряет долю релевантных элементов среди первых k элементов в ранжированном списке.
🟠 Mean average precision at K (map@K). Чаще всего мы имеем дело со множеством объектов, а не с одним, например с сотнями тысяч пользователей. Идея map@K заключается в том, чтобы сначала вычислить среднее precision at K для каждого объекта, а затем усреднить итог.
🟠 Normalized Discounted Cumulative Gain (NDCG). Здесь разберём поэтапно:
- Сначала рассмотрим один объект и k наиболее релевантных элементов. Это будет Cumulative gain at K (CG@K), метрика, которая использует простую идею: чем более релевантные элементы в этом топе, тем лучше.
- Далее введём Discounted cumulative gain at K (DCG@K). Это модификация CG@K, учитывающая порядок элементов в списке. Необходимо домножить показатель релевантности элемента на вес равный обратному логарифму номера позиции.
- В конце концов придём к normalized discounted cumulative gain at K (nDCG@K). Это нормализованная версия DCG@K. Данная метрика принимает значения в диапазоне от 0 до 1.
🟠 Mean Reciprocal Rank (MRR). Метрика усредняет обратные ранги первых правильно угаданных элементов по всем объектам.

Формулы можно найти в этой статье

#middle



tg-me.com/ds_interview_lib/121
Create:
Last Update:

Какие метрики качества ранжирования вы знаете?

Такие метрики используются для оценки эффективности алгоритмов ранжирования, часто применяемых в рекомендательных системах.

🟠 Precision at K (p@K). Это метрика качества ранжирования для одного объекта. Измеряет долю релевантных элементов среди первых k элементов в ранжированном списке.
🟠 Mean average precision at K (map@K). Чаще всего мы имеем дело со множеством объектов, а не с одним, например с сотнями тысяч пользователей. Идея map@K заключается в том, чтобы сначала вычислить среднее precision at K для каждого объекта, а затем усреднить итог.
🟠 Normalized Discounted Cumulative Gain (NDCG). Здесь разберём поэтапно:
- Сначала рассмотрим один объект и k наиболее релевантных элементов. Это будет Cumulative gain at K (CG@K), метрика, которая использует простую идею: чем более релевантные элементы в этом топе, тем лучше.
- Далее введём Discounted cumulative gain at K (DCG@K). Это модификация CG@K, учитывающая порядок элементов в списке. Необходимо домножить показатель релевантности элемента на вес равный обратному логарифму номера позиции.
- В конце концов придём к normalized discounted cumulative gain at K (nDCG@K). Это нормализованная версия DCG@K. Данная метрика принимает значения в диапазоне от 0 до 1.
🟠 Mean Reciprocal Rank (MRR). Метрика усредняет обратные ранги первых правильно угаданных элементов по всем объектам.

Формулы можно найти в этой статье

#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/121

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Библиотека собеса по Data Science | вопросы с собеседований from ye


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA